Ben Cotton

8/11/2004

© Ben Cotton 2004

Acknowledgments

The author wishes to acknowledge the software development
opportunity offered by Chris Hawkes, supervisor for the Nelson
Marina, which provided the basis for this report. His detailed
documentation of requirements, generosity with his time, and praise
were also very helpful.

The invaluable guidance of the supervising tutor for this project,
Matthias Otto, is also acknowledged.

Lastly, the author wishes to thank his father, Roger Cotton, for
proofreading and offering helpful suggestions.

© Ben Cotton 2004

Terms of Reference

As part of the Bachelor of Information Technology programme at
NMIT students are required to undertake a project (PRJ300) of 450
hours of work, in a area of their own choosing. The aims of this
project, as outlined in the project guidelines document, are:

to provide students with the time to undertake a significant piece
of work in an area of interest to them

to provide students with an environment in which they can
develop their problem solving skills to a high level

to provide students with an opportunity to develop their
expertise in one or more specialised areas of information
technology, and

to give students experience in communicating their work to
others in both written and oral forms.

The report produced as part of the project is intended to be a final,
formal summation of the work carried out, and is to be written with
the information technology literate reader in mind.

© Ben Cotton 2004

Table of Contents

Acknowledgmentsciiiiiiiin s nnnn s snnnnnn e i
Terms of Reference.......cvoccervvsnnnmrsnnnnnsnnnnnnnas il
Table of Contents......ccciviiiiiiiic s irnnnnc s snnnnnnss iv
Table of Figures......veccivrimnssncsnsssnnnsnnnnnss viii
1. Executive SUMMAryY .cccvvciccciccccccnieeeeeens 9
2. Introductionccciiiicimiincnins s snnnnnnnnns 13
3. Problem Descriptioncecciinneennnnnnnasns 14
4. Personal Goals.......ccvvveimmiinncsinnssnnnssnannss 14
4.1. Development Environment.............cceeevviin 14
4.2. Cross-platform Design.......ccoevvviiiiiiiinniinnns 15
4.3. Reusability ..cccoviiiiiii 15

5. Methodology.......cciviiiicinninsnncennnnns 15
5.1. Client Relations.....ccovvviiiiiiiiiiie i 15
5.1.1. Requirementscccoiiiiiiiiiiiiiiiiiiieeas 15

5.1.2. USE CASES ...viiiiiiiiiiii e e 16

5.1.3. Prototypes....ccciiiiiiiiiiiiiii e 16

5.2. Development 16
5.2.1. ReSearCh ..o 17

5.2.2. Database Models........cccoiiiiiiiiiiiiiiiiiiienen 17

5.2.3. Class Diagramsccoviviiiiiiieiieeiienieennnennns 17

6. Preliminary Research.........ccivvieeiiinnnnnns 18
6.1. Shrink-wrapped Products............cciiivivninnnns 18
6.2. Systems in UsSecciiiiiiiiiiiiiiiiiiiiiaeaa 19

6.3. Technologiescciiiiiiiiiiiiiiiiiiicic i 19

7. AnalysSis ..iiiicciiiiiiciiiiins s 21
7.1, Marina Structurecccoiiiiiiiiiii 21
7.1.1. Berths oo 21

7.2.

8.1.

8.2.

8.3.

9.1.

© Ben Cotton 2004

7.1.2. LASES ..t 22
7.1.3. FES i 23
7.1.4. Applications.....ccoieiiiiiii 23
Functionality Requirements.......cccoevvvvviinia . 23
7.2.1. Recorded Informationccoeviiiiiiiiiinnnnn. 24
7.2.2. Graphical Display ...ccooviviiiiiiiiieiciee 24
7.2.3. Projection.....cciiiiiiiiii 24
7.2.4. Payments.....coiiiiiiiii 24
7.2.5. MiSSIVES .oiiiiiiiii i 25
7.2.6. REPOMS..ciiiiii i 25
7.2.7. Graphs..iiii i 25
8. DeSigN ..cccvvvnmrrmsssnssmssssnssssssnnssnsssnnnsnsnnnss 20
Database Designcccevvviiiiiiiiiii e 26
8.1.1. AnOmMali€s ...cvviiiiiiiii 26
8.1.2. Problems.....ccoiiiiiii 27
8.1.3. SolUtiONS...cciiiiii i 28
Interface Design......cccoivviiiiiiiiiiiec e 29
8.2.1. Application FOrmc.coiiiiiiiiiiiiiieiiicciieeeas 30
8.2.2. VIEW FOImMS ..o e 32
8.2.3. Reports FOrm.....coiiiiiiiiiiiii e 34
8.2.4. Setup FOrmMS...ciiiiii e 35
8.2.5. Backup and Data Movement Features.......... 35
8.2.6. Graphic Designccoviiiiiiiiiii i 36
Class Design...covvviiiii e e 36
8.3.1. Form Hierarchyccooiiiiiiiiiiiiiieeaen 37
8.3.2. Custom Controlsccccviiiiiiiiiiiiie 37
8.3.3. Design Patternsccccoviiiiiiiiiiiii e 39
8.3.4. Data ACCESS.....icvviiiiiiiiiiiiiiiini e 39
8.3.5. SQLHandlinNg......ccovviiiiiiiiiiiini e 40
8.3.6. BuUSINESS LOGIC ..iiiiiiiiiiiiiiiie i e 41
9. Implementation.......ccvvvvvvsrrssssssssssnnnnnnn 43
Platform Selectioncc.ccoiiiiiii i 43
9.1.1. Databasec.coviiiiiiiiiii 44

© Ben Cotton 2004

9.2. Platform Adaptations..........ccovviiiiiiiiiiennn. 44

0.2.1. Data ACCESS....ccviiiiiiiiiiii it eraaaeenas 45

9.2.2. Custom Controlsccccviiiiiiiiiiiiieen 45

9.3. Debugging ..o 46

9.4, TeStiNg cecviiiiiii i e 46

10. Evaluation.........cciiiiiiccscnnsnss s nnnnnnnas 47

10.1. Client Relations......ccovviiiiiiiiiiii i 47

10.2. Methodology...cvvviiiiii e 47

10.3. Cross-platform FOCUSccivvviiiiiiiiiiieena, 47

10.4. CONEBSION ...t i e 48

10.5. Reusability ...ccovvviiiiii 48

10.6. Platform.....cccooiiiiii e i 48

10.7. Development Environment.............ccoeevvinn 49

11. CoNCIUSIONS .iivecciiiinictis s nr s nnas 50

11.1. Object-oriented Design.........cccvviiiiiiiiinnninnns 50

11.2. Scope Managementccciiiiiiiiiinnnnnnneenn. 50

11.3. TrainNiNg cevvvii e 50

12. Bibliography ...cccciiiiiiiiiiccinnnscssnnnnn s 52
APPENDIX A: Preliminary Conceptual

Database Design.....cccccciiiicmnissnsnnssansssnnnnss 55

APPENDIX B: Preliminary Logical Database
D T Y=Y T« | 3 TR)

APPENDIX C: Preliminary Logical Data
Dictionariesccivvvicirsnnnssncssssnssssnnnnnnss 37

APPENDIX D: Physical Database Design..... 63
APPENDIX E: Use CaseS......cczrrrrrrrsnnsnsnnnnnnns 64
APPENDIX F: Class DesSigns ...cccccruvineennnnnnnss 66
MarinaManager.Data ... 66
MarinaManager.Data.Recordscooiiiiiiiiiiinnnn, 67
MarinaManager.BUSINESS........cvvvvviiiiiiiiiiiiiaieaanaaes 69

Vi

© Ben Cotton 2004

MarinaManager.Business.BaseFunctions 71
MarinaManager.Business.Applications 72
MarinaManager.Business.Berths...................ocnn 73
MarinaManager.Business.Reporting..............oovnen . 75
MarinaManager.Ul.BaseForms.........ccceviiiiiiiinnnnnnn. 76
MarinaManager.UL.Controlsiiiiiiiiiiiinns 77
MYLibrary . e 78
MyLibrary.Controlsccovviiiiiii e 79

Vii

© Ben Cotton 2004

Table of Figures

Figure 8.1: The Berth and Lease entities in the preliminary logical

Figure 8.3: The Application form with the Leases tab page visible. 30
Figure 8.4: The Lease fOorm......ooviiiiiiiiiiiiiiiii e 31

Figure 8.5: The Browse Berths form with PontoonView custom
(70 1 0 | 33

Figure 8.6: The Reports form with Graphs tab page and LineGraph
CONEFOl VISIDIE .. eeee e e e 34

Figure 8.7: The Legend form showing the graphical code used..... 36

Figure 8.8: The relationship between the PontoonView, Pontoon and
BerthButton custom control Classescvvveviiiiiiiiiiii i aee e 38

Figure 8.9: An illustration of the inner workings of the
BerthPeriodVieW Classcuveiiiii i aaeaes 42

Figure 9.1: The platform data access adaptations made regarding
the IDataRecord and IDataReader interfaces.........cccoevvievvinniinnnns 45

viii

© Ben Cotton 2004

Executive Summary

While information technology has revolutionised many areas,
for some reason or another many are still untouched by it.
The question is why?

This report covers the development of an information system
to manage a small marina, which is currently administered
through the use of paper records and whiteboards. Due to
ongoing expansion of the marina, and the employment of an
assistant to the Marina Supervisor, the solution needed to
allow for growth, and include the ability to access data from
multiple locations.

The author had several personal goals in mind when carrying
out all phases of the project. These were:

e to gain experience with a relatively unfamiliar development
environment

¢ to make the solution cross-platform in design, and
e to make parts of the system reusable in future projects.

Regular meetings were scheduled with the client (the Marina
Supervisor) throughout the project work. Use cases and
prototypes were discussed in these meetings. The client also
provided a wish-list of requirements.

Behind the scenes, research was carried out in relevant
subject areas, and database models and class diagrams were
generated.

From preliminary research into existing marina management
systems, there was found to be a sharp divide between low
end systems—which are largely aimed at people
inexperienced with computers—and high end systems.

A variety of applicable web application technologies were also
researched.

After preliminary research the remaining project work was
divided into three phases: database analysis and design,
software designh, and implementation.

Analysis showed the marina structure to be quite complex in
nature. It is made up of a variety of different berth types,
both on the water and off, which can be allocated for different
types of lease. Types of lease can include subleases (when

9

© Ben Cotton 2004

long term leasers are temporarily away) and joint leases (i.e.
one extra large vessel occupying two adjoining berths). Each
type of lease has a different fee structure associated with it.

As mentioned earlier, the marina is in the process of
expansion—new berths are currently being added.

The system produced needed to be able to:

e store information about the vessel and vessel owner in
each berth

e provide some kind of graphical display of the marina
berths and their statuses

e project the status of berths, to see when they would be
available

¢ handle payments, including credits
e print missives such as receipts and invoice notes; and

e print reports such as graphs and listings of vessels which
meet certain criteria.

The major difficulty that arose during database design was
finding a good way of handling subleases and joint berth
leases. Ultimately, the design was made to revolve around a
central Application table which “contains” leases, temporary
absences and payments, and through which subleases are
linked to their parent leases.

In terms of the interface design, this led to the creation of a
central, multi-tabbed Application form for editing all aspects
of a given application, including its leases, absences and
payments.

Other features of the interface design included:

o forms for displaying lists of applications, leases and a
graphical representation of the berth statuses for any
given date.

e forms for setting up berths and fees
e a form for printing reports, and

e a graphical code used throughout to represent the different
types of applications, berths and leases.

10

© Ben Cotton 2004

In terms of the software design, the system was split into
three layers or packages: a data access layer, a business logic
layer, and a user interface layer. In addition, an external
package was included containing generic functionality which
could be used in future projects.

When it came to actually implementing the system, a number
of possibilities for the target platform were considered.
Eventually, it was decided that the resultant system would be
a desktop application, written in C# on Microsoft’'s .NET
Framework. Microsoft SQL Server Desktop Engine was chosen
to be the database management system.

Once the platform had been selected, humerous adaptations
were made to fit the design to the platform, and suitable
debugging techniques were found.

No formal testing was performed, but basic tests were carried
out during implementation and the client was urged to notify
the author of any issues found in prototypes.

On completing the final prototype the author was very
satisfied with the capabilities and quality of the final
prototype, and this was reflected by the client’s praise.
However, the author also found that:

e communications with the client could have been better
(these were largely due to the lack of computer literacy on
the part of the client)

¢ the sequence of the analysis and design phases was not
optimum

¢ too much emphasis was placed on the cross-platform
aspect of the design work

e the class designs were very cohesive, manageable and
reusable

e the target platform was excellent, and
e the development environment used was buggy.

In conclusion, the project work served to demonstrate three
key facts about the information technology industry: the
value of object-oriented design, the importance of good scope
management, and the necessity of training. A lack of
acceptance of these facts could explain why information
technology hasn’t yet penetrated all areas.

11

© Ben Cotton 2004

Although the project was mostly successful, more could have
been achieved had there been a better balance between the
author’s personal goals (especially the goal of a cross-
platform design) and the client’s requirements.

12

© Ben Cotton 2004

Introduction

Information technology, as the term implies, is revolutionising
the management of information across all industries. Tasks
which once required hours of work and screeds of paper can
now be accomplished in seconds, without any paper at all.

While the information technology (IT) revolution is advancing
at a tremendous pace, its penetration into all areas is far from
complete. Many tasks which could be done far more quickly,
efficiently and reliably using information technology are still
being done with the old standards.

Why are these gains still hypothetical for a great many
endeavours? Perhaps the people involved are unaware of the
rewards that can be extracted from information technology. It
could also be precisely this unfamiliarity which alienates
them.

Along with pens, pencils and paperwork, there is another
common element that is also being (inadvertently)
marginalised with the IT revolution: human interaction.
Throughout history, humans have relied on human-to-human
networking to get jobs done. In contrast, the largest network
on the planet nowadays consists, in practical terms, entirely
of machines.

Considering business and other affairs have always involved
direct human interaction, it is only natural for the adoption of
technology to be slow. After all, computers are ultimately
glorified calculators, with no real intelligence of their own—
their power lies in the precision and speed with which they
can tackle problems.

At the end of the day, information technology is about the
sculpting of hardware and software to manage human affairs.
One such application of technology—the management of a
marina—forms the basis of this report.

13

© Ben Cotton 2004

Problem Description

The Nelson Marina is a 24 hour, seven-day-a-week operation
which is owned by the city council and managed by a
contracted supervisor.

Currently the allocation of berths is managed through the use
of a paper-based filing system and whiteboards which show
representations of berths and their statuses. This has been
found to be error-prone, inefficient and inflexible. The goal of
this project was to create an information system to replace
the current system.

As the marina is expanding (this expansion includes the
employment of an assistant to the Marina Supervisor), room
for growth and the ability to access to the data from multiple
locations needed to be included in the design.

Personal Goals

Prior to the commencement of this project, and indeed, prior
to his current studies, the author had garnered a reasonable
amount of non-professional experience in information
technology, particularly programming. While unaware of the
methods of object-oriented software design, the author was
sufficiently familiar with object-oriented development
environments and languages to form strong opinions and
curiosities—especially about emerging platforms.

4.1. Development Environment

As a result of these strong curiosities about
development environments, it became a personal goal
to try something new, even if it was just something
which hadn’t been covered in the papers taken.

The author’s main experience lay in the Borland Delphi
and C++ programming with Microsoft Visual Studio.
Neither of these had been used in the course of his
studies, in favour of Microsoft Visual Basic 6 and .NET.
Because of this, and the strong negative opinion
formed about Visual Basic—particularly Visual Basic
6—it was decided that development should at least be
performed on one of the first two platforms, or else on
an unfamiliar platform.

14

© Ben Cotton 2004

4.2. Cross-platform Design

The author has also always held an admiration for
cross-platform design, if not the resolve to follow
through with those ideals. In the interest of not only
pushing his own skills to the limit, but of producing
something which wasn't tied down to just one
platform, it was decided that the product of the project
work would be as cross-platform in design as possible.

4.3. Reusability

Finally, following the aspirations of object-oriented
design, it was the desire of the author that any widely
applicable functionality developed for the prototype
would be made accessible and reusable for future
projects.

Methodology

The basic execution plan for project work, as mapped out
before the project was even started, consisted of four phases:
preliminary research, database analysis and design, software
design, and software development (i.e. implementation). As
originally envisioned there was no overlap between the
phases, but it was expected that work carried out in the
earlier stages would inevitably need to be revised in the later
ones. The plan was never intended to be followed
dogmatically; it was merely a natural framework for the work
that then lay ahead.

5.1. Client Relations

From the beginning, meetings were conducted with the
client (the Marina Supervisor) on a regular basis.
These meetings (seven in total) enabled the author to
discuss the requirements, ask questions, float ideas
and demonstrate and explain the prototypes produced.

5.1.1. Requirements

As mentioned, a major topic of discussion
during the meetings with the Marina
Supervisor was the requirements for the
system. In this regard the author was very
lucky, as the client produced a document
describing the marina, as well as a wish-list
of features. Documentation supplied by the

15

5.2.

5.1.2.

5.1.3.

© Ben Cotton 2004

supervisor also included sample forms and
reports.

Use Cases

Use cases were used to structure the given
requirements into a more easily usable form,
and bounce them back at the client, for the
purposes of verification. They also acted as a
springboard into the discussion of common
scenarios that which the resultant system
would need to handle.

The use cases for this project can be found
in Appendix E.

Prototypes

From the requirements and use cases, a
range of prototypes were created.

In the software design phase of the project,
a dumb graphical user interface was created.
This was demonstrated to the client to train
them up for the eventual product, and also
to allow them to suggest improvements and
clarify aspects of the requirements.

Several working prototypes—incremental
builds created during the actual
implementation phase—were also
demonstrated to the client. With these
prototypes much greater emphasis was
placed on training and quality control. The
client was able to describe various scenarios
and their correspondence with the features
of the product was explained by the author.
The author also asked that the client retain
and play around with the prototypes to
reveal any issues or bugs.

Development

Behind the scenes several tools and techniques were
used in the course of the development. A description of
the most important ones follows.

16

5.2.1.

5.2.2.

5.2.3.

© Ben Cotton 2004

Research

Before any real analysis or design work was
actually undertaken some research was
carried out on existing systems used in the
field of marina management, as well as
technologies applicable. The findings of this
preliminary research gave a helpful insight
on the problem at hand.

Limited research was also done during the
other phases of the project to find relevant
tools, techniques and strategies.

Database Models

For this project three database models were
developed: a conceptual model, a logical
model and a physical model. Each of these
models contains more implementation
specific details than the previous, so that the
database design can be easily
comprehended and adapted to different
platforms—thus going towards the author’s
personal goal of a cross-platform design.

Though the types of database model lend
themselves to sequential development, as
was the case in this project, to a significant
degree the model development was
concurrent. It was carried out this way as
each model is, in effect, a different
perspective on the same design, and thus
brought to light different issues that affected
all of the models.

Class Diagrams

Given that a large portion of the project
work revolved around software design and
implementation, UML (unified modelling
language) class diagrams were naturally
essential, at least for the design phase.
Preliminary class diagrams were created
during the design phase and these modelled
all parts of the software design, except
classes for the actual forms.

17

© Ben Cotton 2004

The class diagrams of the final prototype
(located in Appendix F) were created using
the reverse engineering functionality of the
development environment used, which
created the necessary UML from the
program code. The reason for this is that it
would have been too time-consuming to
keep class diagrams up-to-date throughout
implementation. The final class diagrams
were included as documentation for future
reference.

Preliminary Research

As mentioned previously, preliminary research into software
solutions for the management of marinas was undertaken.
Three broad areas were considered: shrink-wrapped products,
systems currently in use at marinas, and technologies that
could possibly apply to the problem.

6.1.

Shrink-wrapped Products

In the process of searching the Internet, the author
found a number of existing marina management
systems on the market. In fact, it quickly became
apparent that the market is saturated with such
solutions. From the products the author was actually
able to investigate in the time given, one major
observation could be made: the market is clearly
divided into a low end and a high end.

An example of an archetypical high end system would
be Execu/Tech’s HOTEL!, which comes in Professional
and Premium versions. As the name suggests, it was
“designed for and by high profile 5 star” hotels, but
along with hotel rooms, it can also apparently manage
marina berths. The description mentions advanced
features such as integration with point-of-sale
products, multi-platform networking ability, inventory
and accounting, including credit card processing.

! Marina Management: marina software, marina management software. Retrieved
7 July, 2004 from http://www.execu-tech.com/marinas.shtml.

18

6.2.

6.3.

© Ben Cotton 2004

In contrast there are products such as Marina
Manager? (no relation to the project prototype), which
merely provides the functionality for maintaining
records about vessels and their owners; it doesn’t
manage the allocation of berths. Rather oddly, it
features an integrated word processor, calculator and
calendar tools—obviously intended to cater for small
operations run by people who are largely
inexperienced with computers.

Systems in Use

Considering the problem of marina management
around which the author’s project revolves, it is not all
that surprising that there is a market for systems such
as that being developed here. Further evidence of the
relatively low tech world of small marinas was found in
the sole response to a query about systems used that
was sent via email to several marinas around the
country.

Tauranga Bridge Marina® uses a Microsoft Access
database to maintain records on the berths and the
vessel in each berth, NZAGold for accounting and
Microsoft Excel to record long term stays. However,
the actual allocation of berths is done manually, and
the their “graphical display system” for berths is a
whiteboard with magnetic tabs.

Technologies

The nature of the problem, at first glance, suggested
some kind of solution involving the Internet to make
the data accessible from different locations. To that
end, various web applications platforms were
investigated including Java*, ASP.NET>, PHP®, Perl’,

2 Marina Management Software — Marina Manager. Retrieved 10 July, 2004 from
http://www.marina-management-software.com.

3 Julie Bailey, Marina Administrator, Tauranga Bridge Marina. Personal
correspondence.

4 Java Technology. Retrieved 14 July, 2004 from http://java.sun.com.

> ASP.NET Web: The Official Microsoft ASP.NET Web Site. Retrieved 17 July, 2004
from http://www.asp.net.

 PHP: Hypertext Preprocessor. Retrieved 16 July, 2004 from http://www.php.net.

19

© Ben Cotton 2004

Python®. Development environments were also looked
at briefly.

The first significant trend found was that almost all of
the technologies feature the integration of code with
HTML. The major exception to this is ASP.NET when
development is carried using Visual Studio—the free
Microsoft ASP.NET Web Matrix and other development
environments for ASP.NET don't allow for the
separation of code and HTML.

PHP, Perl and Python form part of the common open
source LAMP platform (Linux, Apache, MySQL,
PHP/Perl/Python), consisting of open source products,
and as such, are cheap and ubiquitous. Other more
obscure web scripting technologies found—TCL, Pike,
Ruby and Lisp—are also quite low cost, open and
cross-platform?®.

In contrast, ASP.NET costs a fair amount, and although
theoretically cross-platform, it hasn’t been ported yet
(open source ports such as Mono?? are in
development); Java Server Pages requires it's own
cross-platform server; and the more obscure
ColdFusion scripting technology'! has significant
licensing fees.

’ The Perl Directory - perl.org. Retrieved 16 July, 2004 from http://www.perl.org.

8 python Programming Language. Retrieved 17 July, 2004 from
http://www.python.org.

° VerBeek, T. (2003). Visual Basic, Active Server Pages, and other web scripting
technology. Retrieved 15 July, 2004 from
http://microsoft.toddverbeck.com/script.html.

19 What is Mono? Retrieved 16 July, 2004 from http://www.mono-project.com.

1 Macromedia ColdFusion MX. Retrieved 15 July, 2004 from
http://www.macromedia.com/software/coldfusion/.

20

Analysis

© Ben Cotton 2004

Through discussions with the client and readings of the
requirements documentation, a rather complex picture of the
marina operations and the desired functionality emerged. It
should be noted that a lot of the seeming arcane-ness is
probably attributable to an intricate relationship between the
Marina Supervisor (the client), who operates the marina, and
the city council, which actually owns the marina.

7.1,

Marina Structure

At the time of writing, the Nelson Marina consisted of
around 500 berths of various types (on the water and
on land). Each of these berths can be leased, and
there are several different leasing structures.

7.1.1.

Berths

There are basically six different types of
berth: permanent, visitor, pile mooring,
hardstand, storage and swing mooring.

The terms permanent and visitor here refer
specifically to pontoon berths; each pontoon
berth may be allocated for either long-term
or short-term stays, with different lease
structures. All the other types of berth are
not reserved exclusively for any particular
term of stay.

Each berth has an identifying number
associated with it. The berth humbers
consist of a two letter code for the type of
berth, or, in the case of pontoon berths, the
letter of the pontoon; and two digits for the
actual number of the berth.

Berths may have a length associated with
them, but a given berth’s length doesn’t
necessarily limit it to vessels of the same
length or smaller, as larger vessels can
sometimes be squeezed in.

Almost all of the pontoons are reasonably
symmetrical, with the berths down the left
hand side being oddly humbered and the
berths down the right hand side evenly

21

7.1.2.

© Ben Cotton 2004

numbered (this is from the perspective of an
observer on the shore facing the seaward
end of a given pontoon). Unfortunately, an
abnormally formed “I” pontoon breaks these
rules: it has a bent shape, with only a few
odd numbered berths (one of which is on the
wrong side), and a range of alignments for
the berths.

Extra pontoons are being added, and
preparations are being made for extra dry
land compounds for hardstand and storage
berths.

Finally, swing moorings are handled fairly
differently in comparison to the other types
of berths—only a register of their current
owner, location (GPS), and safety inspection
status is maintained.

Leases

As alluded to earlier, the permanent and
visitor allocated pontoon berths can be
occupied by long-term and short-term
leasers, respectively. Complicating matters
is the fact that there is a third kind of
lease—a temporary lease—and permanent
berths can be subleased.

Temporary leases are basically interim
leases granted when there are no permanent
berths available, and the leaser is looking to
stay long-term. One reason for the
distinction is that the fee structure is
different; another is the fact that temporary
leases can be granted on berths allocated for
visitors or already-leased permanent berths
where the leaser is temporarily absent.

Already-leased permanent berths where the
leaser is temporarily absent can be
subleased to visitors or temporaries. When
subleased, any fees paid by the sub leaser
get credited to the permanent leaser’s
account.

As a final complication with regards to the
pontoons, the adjacent pairs of berths on

22

7.2.

7.1.3.

7.1.4.

© Ben Cotton 2004

the ends of almost all of the pontoons can
be leased separately (as is usually the case),
or as one extra long berth for unusually
large vessels.

Non-pontoon berths, barring swing
moorings, have associated leases similar to
the pontoon permanent (i.e. long-term)
lease. The only real differences are in terms
of fees.

Fees

The different types of leases have different
fee structures; however, the final prototype
was only required to calculate daily fees.
Visitor, pile mooring and hardstand leases
are charged at a daily rate. In the case of
visitor leases, the actual fee charged is
dependent on the length of the vessel and
the length of the berth.

Applications

With certain lease types, the leaser must
formally apply for the lease; this entails
some added fees in the form of straight
application fees, as well as development
levies. In the case of development levies,
the leaser only has to pay once ever for each
berth they lease.

A register is also kept of vessel owners who
are “waiting” for berths—waiting in a rather
loose sense—as some of entries date back to
the 1970s.

Functionality Requirements

Thankfully, the client was quite flexible with regard to

requirements—their expectations were relatively low.

The only essential feature was the ability to access the

data from different locations—some misinterpretation
occurred here concerning the exact nature of this
accessibility, which is discussed further in 9.1.

As mentioned in 5.1.1, a wish-list of features was

created; these are summarised below.

23

7.2.1.

7.2.2.

7.2.3.

7.2.4.

© Ben Cotton 2004

Recorded Information

It was the stated desire of the client that the
system be able to record a vast array of
information about each berth’s occupying
vessel and vessel owner. This included (but
was far from limited to) information such as
the vessel’'s name, dimensions, and contact
details.

Graphical Display

Some kind of graphical display of the
pontoon berths and their current occupation
status was wanted, though not mandated.
The client would at a minimum be able to
see the name of the vessel leasing any given
berth, the type of lease, and whether the
berth was actually available for subleasing.

Projection

The system would be able to project into the
future and see which berths were available
and when. This would allow the client to
book berths for customers in advance.

A history would also be maintained for each
vessel and each berth, containing
information about the berths occupied and
the vessels occupying, respectively.

It should be noted that the idea of having a
static “view” of the marina berths for the
current date, espoused by 7.2.1 and 7.2.2,
was thought by the author to be unsuited to
the task, given these projection
requirements. The reasoning behind this was
that any “view” of the marina berths could
be efficiently dynamically generated from
lease start and end dates stored in the
system.

Payments

As mentioned in 7.1.3, fees owing would
automatically calculated for certain lease
types, on departure. In the case of
subleases, the regular occupier of the

24

7.2.5.

7.2.6.

7.2.7.

© Ben Cotton 2004

relevant berth would be automatically
credited the same amount.

All payments made (including credits for
future leases) would be recorded, and the
client would be able to edit them.

Missives

Missives such as receipts, invoice notes for
the council and cancellation notices for
permanent leases would be able to be
printed out. In the case of invoice notes, the
client would be able to control which charges
were listed.

Reports

The system would be able to print statistical
reports on annual (in terms of the financial
year) and quarterly numbers of leases and
berths.

According to the client’s own wish-list, the
ideal system would be able to print out
listings of vessels without electrical warrants
of fitness. However, talks suggested that a
wide range of listings of subsets of records
within the system may eventually need to be
producible.

Graphs

Finally, the ideal system would be able to
print out graphs of the numbers of visitors
against the months of the year, and the
numbers of permanent leases against
months of the year.

Discussions with the client brought up a number of
common scenarios which the ideal system would have
been expected to be able to handle. Mostly these just
further underlined the aforementioned requirements,
however one scenario brought to light a significant

issue.

The scenario in question revolved around the handling
of incoming vessels late at night, which normally radio
the Marina Supervisor for a berth. Very few details

25

© Ben Cotton 2004

about the vessel and their owner are collected over the
radio, let alone lease and application details. Because
of this, the system developed needed to be able to
deal with very incomplete data.

Design

Right from the start it was clear that the intricate
relationships between berths, leases, vessels and other
entities required a very inter-connected database, interface
and business logic. The inter-connectedness is most evident
in the database designs.

8.1.

Database Design

The entities, attributes and relationships in the various
database designs were roughly transcribed in the usual
fashion from the business rules found in analysis.
Explanations now follow for the less obviously derived
characteristics of the logical and eventually, physical
designs.

8.1.1. Anomalies

Firstly, swing moorings were assigned a
separate table from the other types of
berths—the reason being the data that was
required to be stored for each was so
different, and the prototype wasn't actually
required to handle leases for them.

Secondly, Notes fields and Complete fields
were added to several tables simply for the
sake of the client, so they could keep track
of any extra information (possibly to work
around limitations of the system), and to
manage incomplete information.

The preliminary logical database design (which can be
seen in full in Appendix B) was one of the first designs
created for the proposed system. At that stage little
regard was being paid to how the database would
ultimately relate to the user interface.

Several major difficulties in the business rules manifest
themselves in the preliminary logical database design.
What follows is a description of these difficulties and
how attempts were made to ameliorate them in the

26

© Ben Cotton 2004

Berth Lease
PK |ID PK |ID
:--D+ N Appl D
ame pplication
i Type ~H-=--- O< rk2 |Berth ID
L O+ Length Start Date
Empty End Date
FK1 | Adjunct Berth ID Joint
MNotes FKA1 | Sub-lease 1D
Motes

Figure 8.1: The Berth and Lease entities in the
preliminary logical design

final physical design (which can be seen in Appendix

D).
8.1.2.

Problems

Firstly, the handling of subleasing posed a
challenge. There had to be some means for
a lease to be somehow linked to another
lease, so making it possible for the client to
navigate from one to the other, keep track
of vacancies, and credit subleased berths.

Secondly, there needed to be a way for, in a
sense, two leases to be treated as one. This
is to allow for circumstances where a vessel
occupies two adjoining berths on the end of
a pontoon, but gets treated as a single lease
with an extra large berth and vessel.

The preliminary logical design attempted to
solve both these problems through the use
of recursive relationships (shown in Figure
8.1), so that any given lease can be linked
to the relevant sublease in the same entity,
and any given berth can be linked to one
adjunct berth. The system would then know
whether a lease was in fact a joint lease of
joint berths, through the use of a Joint flag
in the Lease entity.

The unfortunate thing is that this convenient
use of recursion doesn’t account for
difficulties handling recursion in the user

27

© Ben Cotton 2004

Application Lease
PK |ID PK |ID

VessellD FK1 | ApplicationlD

VesselOwnerlD FK2 | SuperApplicationlD

ApplyDate FH========- -O< Type

Waiting StartDate

IntendedBerthType EndDate

StartDate FH=-========= H- BerthPrefix

EndDate BerthNumber

Notes MNotes
Figure 8.2: The Application and Lease tables in the final
physical design

8.1.3.

interface, and complexities with regard to
querying and updating records—how will the
recursive relationships be traversed
efficiently, and where will the recursion end?

Adding the problems with recursion was the
fact that a lot of other information needed to
be associated with any given lease, including
information about the relevant vessel, vessel
owner, payments, and temporary absences.

A balance needed to be found between
manageability and efficiency. A smaller set
of tables would be simpler and more efficient
from the perspective of the system, but
would require massive redundancy. On the
other hand, if the database was made of a
large set of inter-connected tables, querying
and updating would be very complex and
inefficient.

Solutions

The preliminary logical design already
accounted for the inter-connectedness of the
data by including an Application entity which
bound vessels, vessel owners and leases
together. The next logical step was to make
the entity totally central to the database.

As can be seen in Figure 8.2, the recursive
Lease relationship from the preliminary
logical design was replaced with a double
relationship in the final physical design. Due

28

8.2.

© Ben Cotton 2004

to the nature of the majority of queries and
updates, the relationship was in fact
reversed from the logical to the physical
designs—subleases refer to super-leases,
instead of the other way round. This
relationship is indirect, going through the
relevant Application records.

This solution could not be applied to the
situation with adjunct berths, for obvious
reasons. For this the author decided that the
business rules needed to be slightly less
strictly interpreted—though in most cases
you would not have two leases for the same
application at the same time, the system
would be able to handle two leases at the
same time. The user interface would make it
apparent when an application had two leases
at the same time.

The final designs’ incarnation of the
Application table also links to all of the
tables which were formerly associated with
the Lease table, so that all queries and
updates essentially have to go through the
Application table. This led to simpler queries
and a more effective user interface.

Interface Design

In the early phases of design, the user interface
basically had no depth. Due to the nature of the
database and data, the earliest version featured one
main form with many tabs on it, each tab featuring a
view of the data in the system. All data was viewable
from that main form and the only other forms in the
design were for editing data.

Before moving on, it is worth noting that, a number of
features (mainly print-outs) were never started due to
lack of time, and thus never made it into the final
design. At no stage during the course of design were
the designs truly feature-complete, so even the early
incarnations of the user interface were missing visible
evidence of such uncompleted features, though
locations for them were mentally earmarked.

29

© Ben Cotton 2004

R
Main Details | Vessel | Wessel Cwner Leases |f-\bsences | Subleases | Payment5|

Berth Mo |Start Date |Er1d Date |Lease Type |Sub|ease |Sub|eases

M @Aa0s 17/10/2004 17/10/2004 Temporary Yes 0

< | il

MNew Lease Edit Lease Rermove Lease Calcwlate Baily Fee

v

Figure 8.3: The Application form with the Leases tab page
visible

8.2.1. Application Form

The final user interface improves on the
shallow early designs significantly, but in
some ways is still rather monolithic. The
whole interface is modal in design and
hinges around an Application dialog (Figure
8.3), which is used to view and enter data
for applications. While not the main form, it
is the most hard-working part of the
interface.

From the Application dialog, all data
associated with a particular application can
be accessed. Leases, temporary absences
and payments can be added, edited and
removed; vessel and vessel owner
information can be selected from the
database and edited; and sublease
information can viewed and edited.

30

© Ben Cotton 2004

To add and edit leases the Application dialog
launches the Lease dialog (Figure 8.4).
There the user can search for available
berths according to specified criteria. Periods
of berth availability are then listed. To
prevent the user from creating an invalid
lease in the view of the business rules, each
berth is listed once for each combination of
lease type and period of availability that is
valid. The user must select one and specify
the exact start and end dates for the new
lease, while being prevented from entering
dates invalid for the selected available berth.

To preserve the integrity of the system'’s
berth bookings when the user edits a lease
with the same form, they are prevented
from entering an earlier start date or a later
end date. The system also takes into
account dependent subleases, preventing
the user from changing the start and end
dates in such a way as to make the
subleases invalid. Note that a column
showing the actual number of dependent
subleases can actually be seen in Figure 8.3.

This principle of guarding against the editing

Lease -

—Available Berths

Period Start Date: |17/10/2004 vl Berth Type: I vl Find
Period End Date: (31/10/2004 'l Yessel Length: | m Berths

Available

Berth Mo |Lease Type |Sub|ease |Available from |to |Length {rm) | =
Ba04 Permanent Mo 17/10/2004 31/10/2004 11.00
W oS

Perrmanent s} 17/10/200

31/10/2004 12.00
Permanent 17/10/2004 31/10/2004 |§.12
Permanent s} 17/10/2004 31/10/2004 9.60
Permanent Mo 17/10/2004 31/10/2004 6.70

Temporary Mo 17/10/2004 31/10/2004 12,30

‘isitor s} 17/10/2004 31/10/2004 12,30 =l

Lease Start Date:

Lease End Date:

|1?;10;2004 v[Motes:
|31;10;2004 -
Save | Cancel

Figure 8.4: T

he Lease form

31

8.2.2.

© Ben Cotton 2004

of lease periods in such a way as to make
subleases invalid also applies to the
temporary absences. The user can create
and edit these absences on a separate tab
page of the Application form, but they
cannot invalidate subleases which take
advantage of a given absence. As with the
leases, the absences are each listed with the
number of dependent subleases.

Payments (including credits and any fees
owing) are listed on yet another tab page of
the Application form. The user can add, edit
and delete these manually; they can also
select one of the leases and click a button to
automatically calculate leases for a given
lease and time period. When a lease with
associated payments is deleted, so too are
the payments for that lease if they are
unpaid.

Taking into account the aforementioned
database design links subleases to their
parents through their applications, the
Application form allows the user to view and
edit the associated applications of dependent
subleases. For this it launches another
instance of the Application form for the
relevant sublease application.

View Forms

As mentioned earlier, it was intended that
the Application form be the focal point for
the entire system, and thus be accessible
anywhere anything to do with applications
was referenced. In the final design this
occurs in several places.

Firstly, there is the Applications (plural)
form, which simply lists all of the
applications in the system.

There is also the Leases form which instead
lists all of the leases (including subleases) in
the system. The user can select a lease and
be taken to the relevant application. It is

32

© Ben Cotton 2004

Boromenenn: Il

Date: Im/10;2004 |

Pontoons |Pile Moorings | Hardstand Compound | Storage Compoundl

Sublease: Yes

Figure 8.5: The Browse Berths form with PontoonView custom control

also possible for the user to filter the list by
vessel or vessel owner.

Finally, there is the Browse Berths form
(Figure 8.5), which gives a snapshot of all
the berths at a specified point in time—by
default, the current date. Pontoon berths are
graphically displayed with informational tool
tips, while other types of berths are simply
listed with their status. The user can select
an occupied berth and bring up the relevant
application.

33

8.2.3.

© Ben Cotton 2004

Reports Form

A Reports form (Figure 8.6) allows the user
to create and print graphs and reports. In
the final design this is limited to graphs of
monthly lease numbers and listings of
vessels berthed without electrical warrants
of fitness. Originally though, this form
contained a separate tab page for statistical
analyses.

Because the user may need to print graphs
and reports for both the past and the
present, the interface was designed to allow
the user to specify both the date and the
relevant lease type.

Graphs are printed exactly as they are
shown on the form apart from being scaled
to the page. The listings of vessels without
electrical warrants of fitness are presented
on the screen as a type of scrollable list
view, and printed slightly differently.

To take into account the fact that the listings
in their entirety normally wouldn't fit on a
single page, the system automatically

-0l

Graphs | Vessels without Electrical WOF |

Lease Type: Il Permarent 'l

Financial vear ending: |2oo5 Refresh |

5[P859/4, JURLBLLLISY

Permanent VYessels for Financial Year Ending 2005

Jul

Print |

Aug

Sep

Oct [\ow Dec Jan Feb Mar Apr May Jun
Months

Figure 8.6: The Reports form with Graphs tab page and LineGraph control

visible

34

8.2.4.

8.2.5.

© Ben Cotton 2004

divides the listing up into pages. Common to
each page is a header describing the content
of the report, and column headers for the
rows of data. The system also prints the
page number at the bottom of each page.

Setup Forms

The user is able (nay, required, as no berths
come with the system) to create and edit
berths of the various types. Berths can also
be removed, but for the sake of data
integrity the system prevents the user from
removing berths which have leases
associated with them.

Leasing rates can also be set by the user.
For consistency, it is clearly indicated to the
user that the all of the rates exclude GST,
and the system takes that fact into account.

Backup and Data Movement Features

To ensure that the user does not lose their
data in the event of a minor catastrophe, the
interface provides functionality from the
main window to backup and restore the
entire database.

As an added feature, to make changes to the
data easily portable, the interface asks at
start-up whether or not the user wants to
save to file any changes they make during
that session. If they answer yes, the
interface prompts them to save the changes
to a file when they close the program.
Copies of the system running on other
computers can then be updated from the
saved file by using a button on the main
form.

As a final note, functionality was added to
the main form for destroying and recreating
the database. This was mainly for
convenience during development. The user
is asked for confirmation before any action is
taken.

35

© Ben Cotton 2004

Figure 8.7: The Legend form showing the graphical code used

B

B Permanent

O Temporary

0 visitor

B Pile Mooring
0 Hardstand

B storage

B swing Mooring

01 Permanent Berth
01 “isitor Berth

Leased
Sublease

Inspection Passed

f
d
B Waiting Application
4
X Inspection Failed

8.2.6.

Graphic Design

In the name of ease of use, a colour
graphical code was developed to represent
the different types of leases, as well as the
states of applications and other attributes of
records. This code was derived and
developed from the original graphical display
of berths in the Browse Berths form (Figure
8.5).

This code can be seen in the Legend form
(Figure 8.7), which is the only form in the
final prototype that is not modal. The user
can summon the legend from the main form.
It then stays topmost and translucent while
tasks are carried out using the other forms
in the system.

8.3. Class Design

Early in the software design process it was decided
that the system should be divided into three layers,
packages or namespaces: a data access layer, a
business logic layer, and a user interface layer. The
rationale behind this was to achieve the author’s
personal goal of a cross-platform design (4.2), as well
as to make the classes as manageable as possible.

36

© Ben Cotton 2004

In addition to this, another package was designed
(called MyLibrary). This was not dependent on the
other classes, and was designed to hold classes which
weren'’t specific to this particular problem. This was
done so that they could be reused in future
applications, so meeting the author’s personal goal of
reusability (4.3).

As can be seen in the class designs (Appendix F), all of
the top-level packages in the design contain sub-
packages which further delineate the classes into
dependent groups.

What follows is some highlights of the class designs
and the process by which they were derived.

8.3.1. Form Hierarchy

The final class design uses a basic hierarchy
of classes for the forms in the system. The
only form classes of real note are the
RecordDialog and LookupDialog classes.

The RecordDialog form class provides the
basic functionality for a form which is used
in the process of editing new or existing
records in the database. Its descendents
contain the functionality to display and
extract records from the actual user
interface of the form, while notifying the
user of any validation errors. Examples of
RecordDialog descendants include the
aforementioned Application and Lease forms.

The LookupDialog form class provides the
functionality for a form which is used to
prompt the user to select a record from a
list. Descendants contain specific
functionality to display the different types of
record.

8.3.2. Custom Controls

It was immediately clear at the start of the
project work that at least one custom control
needed to be created. That control is the
PontoonView control (visible in Figure 8.5),
which was required to display the pontoon
berths and their statuses.

37

© Ben Cotton 2004

PontoonView Pontoon BerthButton
>
1 " 1 "

events

Figure 8.8: The relationship between the
PontoonView, Pontoon and BerthButton
custom control classes

Behind the scenes, not just one but three
classes are used: the PontoonView control
itself, a Pontoon control, and a BerthButton
control. These are nested inside each other
to make up the final display, with click
events being propagated up from the
BerthButton controls to the PontoonView
control for the sake of simplicity (Figure
8.8).

To save repeating a lot of the same basic
code to deal with list views and such things
as the facilities to edit records, two control
classes were added. These were the
EditListView and RecordListView classes.
Both of these classes fire and respond to
events.

The EditListView control ties a list control
with buttons for manipulating the items, so
that the enabled state of the buttons
automatically changes as items are selected
or deselected. Unlike the RecordListView
class, this class was separated into the
MyLibrary package.

The RecordListView control is a descendant
of the EditListView control and adds the
ability to deal with the list items as records.

For the reporting features, a custom control
class (LineGraph) to display and print line
graphs was also designed. This was added to
the MyLibrary package. An ancestral Graph
class was also added to allow for future
development (4.3).

38

8.3.3.

8.3.4.

© Ben Cotton 2004

Lastly, though not strictly speaking a custom
control, a PrintableTable class was added for
printing the multi-page tables described in
8.2.3.

Design Patterns

Limited research was carried out in the area
of object-oriented design patterns for the
sake of the data access and business logic
packages. A variety of standard design
patterns were looked at, but really only
one—the Proxy pattern’?—was found to be
applicable; however, it was ultimately never
used.

The following design for the data access
framework was largely inspired by an
approach used in a commercial content
management system?3.

Data Access

In comparison to the other layers, the data
access layer contains few classes. The main
ones are the Database class, Record class,

and Function class.

Before continuing, it must be noted again
that a major personal goal was to end up
with a design that was as cross-platform as
possible (4.2).

The Database class is essentially the
embodiment of the database connection. It
is responsible for creating, backing up and
restoring the database. Queries and updates
are also handled by this class, which for
efficiency are all done with SQL.

12 Gamma, E., Helm, R., Johnson, R., & Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, USA.

13 Spolsky, J. (2003). Joel on Software - CityDesk Entity Classes. Retrieved 10
August, 2004 from
http://www.joelonsoftware.com/articles/CityDeskEntityClasses.html.

39

8.3.5.

© Ben Cotton 2004

The abstract Record class provides the
functionality to read fields off a row returned
by an instance of the Database class in
response to a query. It can also add or
update a row in a table. Descendants
implement the abstract functionality for
specific tables, with the instances acting as
type-safe conduits for data in the database
and providing basic integrity checks.

The abstract Function class actually links the
Database and Record classes together. It
takes a query, executes it against a
Database object and then creates and reads
in instances of the appropriate Record
subclasses to suit. While doing this, it takes
into account the different tables that are
joint in the query.

SQL Handling

To the end of cross-platform design and
manageability, it was a intended if at all
possible the final implementation would not
mix SQL statements and code. It was
desired that the design take advantage of
the string formatting routines common to
many programming languages, whereby
special markers in strings can be replaced
with substrings at runtime.

Two other classes in the data access
package (Sqg/Resource and SqglLog) allow the
loading of groups of SQL statements from
text resources, and the saving of groups of
SQL statements to text files. This is for the
purposes of separating SQL from code, and
saving logs of changes to the database,
respectively. As they share an inheritance
bond, the classes both use the database-
specific batch separators to break the groups
of statements up into batches. This makes it
easy to switch between a query analyser and
the development environment.

The SqglResource class can also extract
names for the SQL batches which have been
specified in the comments of the SQL. It was

40

8.3.6.

© Ben Cotton 2004

designed this way so that code can reference
a particular SQL statement or statements by
name, and so the order of the batches of
statements in the resource doesn’t matter.

Business Logic

The business logic is by far the largest
package in the project, which is unsurprising
given the complexity of the business rules.
Virtually all classes in it are descendants of
the above-mentioned Function class, or its
close descendent in the logic layer, the
RecordList class, which adds record creation
and updating functionality—with checks for
data integrity.

Basic descendents of the Function class
implement the functionality needed to
retrieve and filter the appropriate data for
the view forms of the user interface, while
the complex Application form is dependent
on a close-knit sub-package of related
RecordList descendents.

To generate a view of the marina for a
specific date for the Browse Berths form,

and to extract the available berths for the
Lease form, a BerthPeriodView class was
included. This class cross-references lease,
absence and berth records to generate a
snapshot of the berths over a given period of
time. For the Browse Berths form this period
is one day.

41

© Ben Cotton 2004

Blocks

Available far i
- s"lrjablaa;rq Leased Available
Sublease !
Lease Lease Lease
12 QOct 13 Oct 14 Oct 15 Oct 16 Oct

Figure 8.9: An illustration of the inner workings of the BerthPeriodView

class

The technique used to generate this
snapshot is moderately complex, but can be
analogised as layered pieces of coloured
glass (seen in Figure 8.9).

With the help of supporting classes, for each
berth the BerthPeriodView class can be
imagined to lay a piece of coloured glass on
a calendar for each day the berth is leased.
It then goes through all the absences and
overlays differently “coloured pieces of
glass” on the calendar for each of these
days. When finished, it scans through the
calendar for contiguous blocks of “colour”
generated by the layered pieces of “coloured
glass”.

Descendents of the BerthPeriodView class
take the generated segments of “colour” and
extract periods of availability for berths or
berth statuses, as the need dictates.

Finally, the functionality to extract the
monthly totals of vessels for the graphing
facilities in the Reports form, is included in a
VesselMonthReport class.

42

© Ben Cotton 2004

Implementation

Implementation, as the reader may have inferred, was
started partway through the design process. This section
mainly serves as a discussion of the stickier platform
implementation issues.

9.1.

Platform Selection

Because of the cross-platform intent of the author, the
selection of appropriate platform for the final prototype
was left till this late stage. As mentioned in earlier
sections, there was some ambiguity over how
accessible and portable the data needed to be, which
led to the consideration of web-based solutions.

ASP.NET (6.3) was considered for its ease of use,
power, and potential. The author had some cursory
experience with it, and, as it was an emerging
technology, wished to acquire a deeper knowledge.
This included gaining experience with the C#
language, which is part of ASP.NET and was known to
be similar to C++, a favourite language of the
author’s.

The other, more common and freely available scripting
languages such as Perl, Python and PHP were
considered, but were judged to be too unfamiliar in
syntax and architecture.

What ultimately led to a re-evaluation of the
destination environment was a true realisation of the
high costs involved in ASP.NET hosting. For the sake of
the client it had always been the intent to make the
solution as cheap as possible, so in discussions with
the client the system requirements were reconsidered.
As it turned out, a desktop solution was adequate for
the task.

Thankfully, the author did not need to develop the
prototype under ASP.NET to gain the desired
experience with the C# cross-platform programming
language; C# can be used in the development of
desktop applications. As such, it became the
development platform, with Microsoft Visual Studio
serving as the integrated development environment.

43

9.2.

9.1.1.

© Ben Cotton 2004

Database

The choice of database management system
(DBMS) was somewhat less important than
the choice of platform, due to the fact that
there are a small number of ubiquitous
cross-platform database connectivity
standards. Three DBMSs were considered, in
turn.

Firstly, the MySQL DBMS* was considered
for its adherence to the ISO SQL standards
and open source, cross-platform nature.
However, it was eventually rejected due to
the confusing licensing terms, which might
have required to client to spend a lot of
money.

Microsoft’s Jet DBMS was considered next
for its ubiquity across the Windows platform,
and for the fact it is free to use. It was
rejected early in the implementation
because of problems getting it to work, and
a near-complete lack of documentation.

Microsoft’s SQL Server Desktop Enginel® was
finally chosen for its wide-spread support
and easy licensing terms.

Platform Adaptations

In the process of implementation, certain adaptations
were required to tailor the design to the chosen
platform. These adaptations included making classes
inherit from the .NET classes, and using non-standard
SQL script dialects. The most notable, yet least
obvious adaptations will now be described.

14 MySQL: The World’s Most Popular Open Source Database. Retrieved 17 July,
2004 from http://www.mysqgl.com.

15 Microsoft SQL Server: MSDE 2000 Home. Retrieved 25 July, 2004 from
http://www.microsoft.com/sql/msde/default.asp.

44

9.2.1.

9.2.2.

© Ben Cotton 2004

Data Access

In the .NET Framework, database queries
return instances of classes which implement
the IDataReader interface. This interface
provides the means to iterate through the
returned rows of a query. It descends from
the IDataRecord interface, which contains
accessors for fields. To make it possible for
the Function class to generate Record
instances corresponding to the rows of a
given query, the Database class returns an
IDataReader for each query, and the Record
class reads in data from an IDataRecord.
This is illustrated in Figure 9.1.

Custom Controls

To get the appropriate bordered look of the
PontoonView (Figure 8.5) and LineGraph
(Figure 8.6) control classes, they actually
had to inherit from the .NET Panel class,
rather than the expected ScrollableControl
and Control classes, respectively.

Continuing with the LineGraph class, the
relevant code took advantage of the .NET
Framework which features a Graphics class
for drawing, instances of which can
represent the screen or the printer. Taking
advantage of this fact, the LineGraph class

sinterfaces
IDataRecord

Record

+GetByfe(in index - int) © byte

+GetBooleaniin indax :int) © boaol k= —

+other accessors,,. (in index : inf) | <unspecifisd=

+Raad(in record ! IDataRacord, In offsat inf)

|

sinterfaces
IDataReader

+Read]) : bool

T
|
I

Database

+ExecuteRead(in sql : string) : IDataReader

Figure 9.1: The platform data access adaptations made
regarding the IDataRecord and IDataReader interfaces

45

9.3.

9.4.

© Ben Cotton 2004

actually uses exactly the same code for both
drawing the graph on screen and drawing
the graph on a printer page.

Debugging

In addition to the usual set of debugging tools that the
development environment had to offer, several
techniques were developed to handle the task.

Firstly, as a result of the fact that the system was a
database application, an external query analyser
played a large role in debugging. In the process of
fixing bugs, the author switched between the
development environment’s debugger and the query
analyser constantly, to eliminate SQL queries as a
source of problems.

On the opposite side of things, the custom control
classes and classes for printing graphs and tables were
barraged with an array of fabricated data before they
were ever made data-aware, to rule them out as a
source of problems.

Lastly, assertions were used to perform checks for the
correctness of parameters in methods, as well basic
integrity checks on data pulled in from the database
and resources.

Testing

Though no formal tests were carried out, testing
(including those above) was performed throughout
implementation to ensure the parts being worked on
operated correctly.

During demonstrations of prototypes, any issues that
came up were also noted and later corrected, if
possible. As noted in 5.1.3, the client was also urged
to hold on to and play around with the prototypes,
notifying the author of any problems they had.

46

© Ben Cotton 2004

10. Evaluation

Overall the author was very satisfied with the capabilities and
quality of the final prototype, and this was reflected by the
client’s praise. However, this is not to say there were not
things about the project work which the author felt could have
gone better.

10.1.

10.2.

10.3.

Client Relations

Communications with the client formed a significant
and pervasive part of the project work. Unfortunately,
as noted in previous sections, some misunderstandings
arose which showed that the author’s interpersonal
communication skills could be improved.

Another significant contributor to these
misunderstandings was the fact that the client was
largely computer illiterate. Describing how not only the
prototypes produced, but computers in general worked
proved to be arduous and difficult to avoid. However,
the client was urged to learn as much as possible in
their own time.

Methodology

In terms of the methodology used, it was felt that the
order of the analysis and design phases could have
been improved.

The sequence of analysis and design, as expounded in
the previous sections, featured database analysis and
design first, and then software design. Database
analysis and design was carried out using conceptual,
logical and physical designs, while software design
involved the development of use cases, interface
designs and class diagrams.

In the end, the use cases and interface designs
developed in the software design phase were found to
be more useful in capturing the scope of the business
rules than the process of creating database designs
had been.

Cross-platform Focus

It was felt that the cross-platform focus of the design
and implementation parts of the project were too

47

10.4.

10.5.

10.6.

© Ben Cotton 2004

ambitious. Many issues cropped up with regard to this
aspect which, in hindsight, would have been better
served by a project brief with fewer business
requirements and more time.

Cohesion

On the bright side of things, the large number of the
classes created for the prototype ended up being very
cohesive. Though on the surface the total number of
classes in the final prototype may seem excessive
(there are around 70 in total), each class served to
delineate the code enough to make the complex
business rules and functionality manageable.

The separation of the design into layers and the use of
packages and sub-packages also provided a beneficial
cohesion between groups of classes and of
functionality—they made a complex task simpler.

Reusability

In contrast with the goal of a cross-platform design,
the emphasis on reusability with regard to future
applications went well. There was no difficulty to be
had separating the reusable elements from the non-
reusable elements. Not only that, but this weeding out
of reusable elements seems to have been very
conducive to good design, and, most importantly, the
author was left with a very useful array of classes for
use in future projects.

The prototype-specific classes were, at least from the
perspective of the user interface classes, very reusable
too. Apart from the Application form, each form class
required very little code—only the most basic routines
to display data in, and extract data from the user
interface were required.

Platform

By and large, the author was pleased with the platform
selected for implementation. Though the C# language
had not been used before, it was able to be picked up
easily due to its similarity with languages the author
had experience with. In fact, it was found to be in
many ways superior to these previously experienced

48

10.7.

© Ben Cotton 2004

languages, due to its balance between cleanliness and
power.

Development Environment

The development environment used (Microsoft Visual
Studio .NET) was found to be very flexible and
powerful; however, it did have some not-insignificant
usability issues when it came to the form designer. The
most verifiably incorrect of these behaviours was a
chronic inability to save forms correctly.

Under Visual Studio .NET, the form designer saves the
controls, their properties and layout as initialisation
code in a hidden section of the relevant class source
code file. Every time the user builds the application,
the development environment refreshes the form
layout in the form designer, from the code.

On multiple occasions a change was made to a control
on a particular form through the form designer. The
application was then rebuilt, and form designer view
changed right in front of the author’s eyes. To work
around these cases, the relevant initialisation code had
to be manually edited.

49

© Ben Cotton 2004

11. Conclusions

As a whole, the project work documented in this report
served to demonstrate three key facts about the information
technology industry: the value of object-oriented design, the
importance of good scope management, and the necessity of
training.

11.1.

11.2.

11.3.

Object-oriented Design

Object-oriented (OO) design has been held as an all-
purpose cure for software development woes by many
developers, since it was first conceived. While some
people may well have overstated the importance of OO
design, this project has shown the power of such a
methodology.

The mere fact that a complex set of business rules like
the marina’s were able to be implemented in the
relatively short time available speaks volumes. Add to
this the amount of functionality achieved, and the
cohesive, manageable and reusable fashion in which it
was achieved and you have a winning paradigm.

Scope Management

Though proper OO design can go a long way, it is not a
magic bullet. It cannot increase the number of hours in
a day, nor can it make complex business rules simple.

It's always good to have high ambitions, but as is often
the case with software development—and in particular
this project—those ambitions, in conjunction with OO
methods, can obscure the inherent complexity of a
problem. In the case of this project, more, practical
functionality may well have been able to be completed
in the time given, if the author hadn’t put so as much
emphasis on things like cross-platform design.

Training

Following on, even if you manage to include all the
practical features in the world, it doesn’t mean a thing
if the users don’t know how to use them. This applies
both to custom software systems such as the project
prototype and to information technology in general.

50

© Ben Cotton 2004

And in the case of custom software systems, it
certainly doesn’t help in development. Much time that
could have been spent more constructively on this
particular project was wasted explaining what should
have been basic things.

You could argue that the purpose of information
technology professionals is to absolve the need for
users to have any expertise. Realistically though, for
the use of information technology to really be
effective, computers need to be approached like cars,
with regards to training. Plenty of people don’t know
how car engines work but everybody who drives has
invested significant time in learning how to drive safely
and properly.

To sum up: although information technology has such huge
potential in so many areas, the failure of it to penetrate some
of those areas could probably be blamed on an
underestimation of the work required, both on the user’s side
of things and on the developer’s.

This particular project, while largely successful in solving the
stated problem, could have achieved more had there been a
bit more balance between the author’s personal goals and the
client’s requirements.

51

12.

© Ben Cotton 2004

Bibliography

The Apache Struts Web Application Framework. Retrieved
15 July, 2004 from http://struts.apache.org.

ASP.NET Web: The Official Microsoft ASP.NET Web Site.
Retrieved 17 July, 2004 from http://www.asp.net.

Connolly, T. & Begg, C. (2002). Database Systems: A
Practical Approach to Design, Implementation, and
Management (3™ ed.). Addison-Wesley.

Dock Slips. Retrieved 11 July, 2004 from http://www.ids-
astra.com/dock_slips.

eric3. Retrieved 18 July, 2004 from http://www.die-
offenbachs.de/detlev/eric3.html.

Gamma, E., Helm, R., Johnson, R., & Vlissides,]. Design
Patterns: Elements of Reusable Object-Oriented Software.
USA: Addison-Wesley.

Hall, M. Core Servlets and JavaServer Pages. Retrieved 14
July, 2004 from http://csajsp-
chapters.corewebprogramming.com/Core-Servlets-and-
JSP.pdf.

HavenStar. Retrieved 11 July, 2004 from
http://www.starleisure.com/HSMOverview.asp.

IDE.PHP. Retrieved 18 July, 2004 from
http://www.ekenberg.se/php/ide.

Java Technology. Retrieved 14 July, 2004 from
http://java.sun.com.

Laudon, K. C. & Laudon, J. P. (1996). Essentials of
Management Information Systems: Organization and
Technology. Prentice-Hall.

Macromedia ColdFusion MX. Retrieved 15 July, 2004 from
http://www.macromedia.com/software/coldfusion/.

Marina Management: marina software, marina
management software. Retrieved 7 July, 2004 from
http://www.execu-tech.com/marinas.shtml.

52

© Ben Cotton 2004

Marina Management Software — Marina Manager. Retrieved
10 July, 2004 from http://www.marina-management-
software.com.

Marina Management System (MMS). Retrieved 10 July,
2004 from
http://www.pacsoft.co.nz/mms/MMS%20Demo_files/MMS
%20Demo.pps.

MarinaOffice. Retrieved 7 July, 2004 from
http://www.scribbletraining.com/Merchant2/modemo/mod
emo.htm.

MarinaWare. Retrieved 11 July, 2004 from
http://www.marinaware.com.

Microsoft ASP.NET QuickStarts Tutorial. Retrieved 17 July,
2004 from
http://www.dotnetjunkies.com/quickstart/aspplus/doc/appl
ications.aspx.

Microsoft SQL Server: MSDE 2000 Home. Retrieved 25
July, 2004 from
http://www.microsoft.com/sql/msde/default.asp.

MySQL: The World’s Most Popular Open Source Database.
Retrieved 17 July, 2004 from http://www.mysql.com.

NetBeans. Retrieved 14 July, 2004 from
http://www.netbeans.org.

Ocelot. Retrieved 10 August, 2004 from
http://www.ocelot.ca.

Open Perl IDE. Retrieved 18 July, 2004 from http://open-
perl-ide.sourceforge.net.

Perl Builder. Retrieved 18 July, 2004 from
http://www.solutionsoft.com/perl.htm.

The Perl Directory - perl.org. Retrieved 16 July, 2004 from
http://www.perl.org.

PhpEd. Retrieved 18 July, 2004 from
http://www.nusphere.com/products/index.htm.

PHP: Hypertext Preprocessor. Retrieved 16 July, 2004 from
http://www.php.net.

53

© Ben Cotton 2004

Python Programming Language. Retrieved 17 July, 2004
from http://www.python.org.

Python Tutorial: Python. Retrieved 17 July, 2004 from
http://martin.f2o0.org/python/tutorial.

Remenyi, D. (1993). Information Management Case
Studies. London, UK: Pitman Publishing.

Servlets and JSP: An Overview. Retrieved 14 July, 2004
from http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/.

Spolsky, J. (2003). Joel on Software - CityDesk Entity
Classes. Retrieved 10 August, 2004 from
http://www.joelonsoftware.com/articles/CityDeskEntityClas
ses.html.

Spolsky, J. (2001). Joel on Software — User Interface
Design For Programmers. Retrieved 11 August, 2004 from
http://www.joelonsoftware.com/uibook/fog0000000249.ht
ml.

VerBeek, T. (2003). Visual Basic, Active Server Pages, and
other web scripting technology. Retrieved 15 July, 2004
from http://microsoft.toddverbeck.com/script.html.

What is Mono? Retrieved 16 July, 2004 from
http://www.mono-project.com.

Wing IDE. Retrieved 18 July, 2004 from
http://wingide.com/wingide.

Zope. Retrieved 15 July, 2004 from http://zope.org.

54

© Ben Cotton 2004

APPENDIX A: Preliminary
Conceptual Database Design

POlE Sl
21eq Addy
sop auaud
SSaIppY

ajeduwon
7 fal
\“,l Jaume) jeog |,
_J, ™
— ..,

=t
3
¢
El
o
—|%
g

\,
PMEd 81BQ

- ’
- BULIGOK
- Buimg [
d \
|

1 ¥
- . III J’/.
| 80| yueg
e sBy

55

© Ben Cotton 2004

ICa

Log

iminary

Prel

Database Design

APPENDIX B

F———

Q

Berth
Pk D Berth Type
PK |Type
Name
FK1 | Type B == ==H~ Deposit
Length Levy
Empty Annual Fee
FK2 | Adjunct Berth ID Annual Fee Multiplier
Notes Daily Fee
T Daily Fee Multiplier
= A
| Interim
1
_ 0
R “
Lease !
Departure !
PK |ID w
PK,FK1 |Lease ID
PK Departure Date POt FKk3 | Application ID Application
FK1 | Berth ID
Return Date Start Date Pk _|1D
End Date SO —-—--~ H+ Fk2 | BoatID
Joint
£k2 | Subdease ID FK1 | Boat Owner ID
Apply Date
Notes s
Waiting
- ﬁ G FK3 |Berth Type
“ ' T Levy Paid S|
I -l Start Date
End Date
m Notes
Payment
Swing Mooring PK |ID
PK |Name FK1 |Lease ID
Date
GPS Date Paid
Owner . Amount
Last Inspection Date Council
Inspection Passed Notes

Boat

PK

ID

FK1

Boat Owner ID
Name

Length

Beam

Draught

Colour

Type

Hull

Comm. Activity
Fire Extinguishers
Persons Onboard

S55B Call Sign
WHF Channels
Complete
Notes

Electrical WOF Expiry Date

v
-+
]
]

e
I

Boat Owner

PK |ID

Name

Address
Business Phone
Frivate Phone
Mobile Phone
Cust No.

Email
Complete
Notes

56

© Ben Cotton 2004

APPENDIX C: Preliminary Logical
Data Dictionaries

Application

FIELD TYPE RANGE
NAME

ID Integer

Boat ID Integer

Boat Owner | Integer

ID

Apply Date | Date DD/MM/YYYY
Waiting Boolean

Berth Type | Text 20 Characters
Levy Paid Boolean

Start Date Date DD/MM/YY
End Date Date DD/MM/YY
Notes Text 200 Characters
Berth

FIELD TYPE RANGE
NAME

ID Integer

Name Text 4 Characters
Type Text 20 Characters
Length Decimal 4.00-50.00
Empty Boolean

57

© Ben Cotton 2004

FIELD TYPE RANGE
NAME

Adjunct Integer

Berth ID

Notes Text 200 Characters
Berth Type

FIELD TYPE RANGE
NAME

Type Text 20 Characters
Deposit Currency

Levy Currency

Annual Fee | Currency

Annual Fee | Currency

Multiplier

Daily Fee Currency

Daily Fee Currency

Multiplier

Interim Boolean

Boat

FIELD TYPE RANGE
NAME

ID Integer

Boat Owner | Integer

ID

Name Text 30 Characters
Length Decimal 4.00-50.00

58

© Ben Cotton 2004

FIELD TYPE RANGE

NAME

Beam Decimal 0.10-10.00

Draught Decimal 0.10-10.00

Colour Red, Orange, Yellow, Green, Blue,
Indigo, Violet, Black, White

Type Yacht, Motor sailor, Launch

Hull Mono, Catamaran, Trimaran

Comm. Boolean

Activity

Fire Integer 0-10

Extinguishers

Persons Integer 0-15

Onboard

Electrical Date DD/MM/YY

WOF Expiry

Date

SSB Call Text 10 Characters

Sign

VHF Text 10 Characters

Channels

Complete Boolean

Notes Text 200 Characters

Boat Owner

FIELD TYPE RANGE

NAME

ID Integer

Name Text 50 Characters

59

© Ben Cotton 2004

FIELD TYPE RANGE
NAME

Address Text 200 Characters
Business Text 20 Characters
Phone

Private Text 20 Characters
Phone

Mobile Text 20 Characters
Phone

Cust. No. Text 8 Characters
Email Text 30 Characters
Complete Boolean

Notes Text 200 Characters
Departure

FIELD TYPE RANGE
NAME

Lease ID Integer

Departure Date DD/MM/YY
Date

Return Date | Date DD/MM/YY
Lease

FIELD TYPE RANGE
NAME

ID Integer

Application | Integer

ID

60

© Ben Cotton 2004

FIELD TYPE RANGE
NAME

Berth ID Integer

Start Date Date DD/MM/YYYY
End Date Date DD/MM/YY
Joint Boolean

Sub-lease Integer

ID

Notes Text 200 Characters
Payment

FIELD TYPE RANGE
NAME

ID Integer

Lease ID Integer

Date Date DD/MM/YY
Date Paid Date DD/MM/YY
Amount Currency +/-

Council Boolean

Notes Text 200 Characters

Swing Mooring

FIELD TYPE RANGE
NAME

Name Text 4 Characters
GPS Text 10 Characters
Owner Text 50 Characters

61

© Ben Cotton 2004

FIELD
NAME

TYPE

RANGE

Last
Inspection
Date

Date

DD/MM/YY

Inspection
Passed

Boolean

62

© Ben Cotton 2004

APPENDIX D: Physical Database
Design

StartMonth
EndMonth

LongitudeMinutes
LongitudeSeconds

Owner

LastinspectionDate
InspectionPassed

Payment
Vessel
—— g PK,FK1 | ID
PK |ID
LeaselD
Name DateRequested
Length Absence DatePaid
Beam Amount
gfﬂught PKFKI |12 Credit
olour i
Type LeaveDate ﬁo:mcn
Hull ReturnDate otes
CommaActivity
FireExts
LiveAboards
ElectWOFExpiryDate
SSBCallSign +
VHFChannels
Complete M Application VesselOwner
Notes H---09
PK |ID PK | 1D
FK1 | VessellD Name
FK2 |VesselOwnerlD Address
ApplyDate PO-======= H+ BusinessPhone
Waiting PrivatePhone
IntendedBerthType MobilePhone
StartDate CustomerNo
EndDate EmailAddress
Pontoon Notes Complete
Notes
PK | Prefix = = °
I 1
EastShore : :
Lo
I 1
I 1
I I
Berth Lo Lease
I 1
PK,FK1 | Prefix | L __ - PK |ID
PK Number \
| FK2 | ApplicationlD
Type e __ o< FK3 | SuperApplicationlD
Length Type
Notes Hemmmmmm e mm e e - O StartDate
EndDate
FK1 | BerthPrefix
FK1 | BerthMumber
Notes
SwingMooring
PK | Number
LatitudeDegrees
FinancialYear LatitudeMinutes Fees
LatitudeSeconds
LongitudeDegrees PK |ID

63

SmallVesselDailyFee
MediumVesselDailyFee

LargeVesselDailyFee
PileMooringDailyFee
HardstandDailyFee

© Ben Cotton 2004

Use Cases

APPENDIX E

Search by Vessel
MName Wiew History

This takes info account vessels leaving and such. J

Search by Vessal
Browse Berths e

Add Application

HUSESH

View Applications

Record

Edit Lease Details

Frint Statistics

Print List of
Wessals without WOF

Frint Imvoice Notes.

View Swing Moorings
will also be flagged.

The relevant leases. berths etc J

Edit Swing Moorings

\
Search for Berth
Add Lease/Sub-lease

Paymenis/Credils

calculated and added.

Credits will automatically be

]

™
Edit
Payments/Credits

GUSBSR

Frint Invoices

Payments owing will automatically
be caleulated and added.

]

64

© Ben Cotton 2004

Setup Berths

Setup Pontoons

Setup Pole Moonings

etup Hardstand
Compound

elup Storage
Compound

Marina Suyst

Backup Data
Restore Backup

Save Changelog

pdate fram
Changelog

65

© Ben Cotton 2004

igns

Class Desi

APPENDIX F

MarinaManager.Data

Database

+hoDate : DateTime = new DateTime(1753. 1. 1}

~connection | SglConnection

Hlog - Sgllog
+Mame : string
HFileMame : string

~command | 3qlCommand

_ SqlResource

rator - string = "AnG0"
tatementnamestart : string = "

-operations

Loperations : SglResource = new SqlResource"MarinaManager. Data.Operations.sql")

+Databasa(in name : string, in flename : string)
H#Closa()

-DratabaseExists() : bool

-CreateObjects()

+ExecuteRead(in sgl : string) : |DataReader
+Exacutalpdatelin gl - siring) : int
HExecutelUnloggedU pdatedin sql @ string) : int
+ExecuteScalarReadi|in sgl - string) : object
HLog() : SglLog

+Backup(in filepath ; string)

+Restoraiin flepath - siring)

HRecraate|)

+FormatDatelin date : DateTime] - siring

7T
|
|
|
|
I
1

termsbyindeax : ArrayList = new ArrayLisi()
iternsbyname | Hashtable = new Hashtable{)

qlResource)
SqlResource(in resourcename | string)
oadSgl{in reader - StreamBeader) © siring
illfin sql : string)
ExtractStatementMame(inout sglstatement : string) : string
is(in statementrame : string) © string
is(in index ; int) : siring
aunt() : int

SqlLog

+Sqllogl)

Function

#database : Dalabase
Holnttables @ int = 1

ithewReacordiin table ; int) : Record
WExecute(in sgl : siring, In jointtables - int)
Fthis(in index : int, in table : int) : Record
+thisiin index - int) : Record

[#ndexCf{in record : Record, intable - int) : int
+HindexOfiin record : Record) : int
iraddRecords(in records © params Record(]}

FLoadRecordiinout record : Record, in reader : |DataReader, inout offset : int)

+Add(in sql : string)

| +Execute(in database : Database) : bool
+Load(in path : string)

+3ave(in path : string)

66

© Ben Cotton 2004

MarinaManager.Data.Records

InvalidFieldException

#nvalidFisldExcaption(in message : sting)

SwingMooringRecord

IEesource = new SqlResource|"MarnaManager. Dala. Records. Records. sgl”

+Raad|in record ! IDataRecord, in offset @ int)
+Read(in database : Database)
FormatSqliin sqiformal ; sfring) : string
+alidate()

+|nsert(in database : Dalabase)

+Update(in database : Database)

+Delete({in database : Database)
+HrigldCount() : int

+SelectAllSgl() : sting

+Clone() : object

+StoraOldiey()

+CompareKey(in record : Record, in usethisoldkey | bool) : bool
+TableName() : sting

HsMNull{) - bool

H0ldMumber @ short

Mumber | shiort

tLatitude | GecdeticCoordinate
+Longitude | GeodeticCoordinate
H+Owner : string
+LastinspectionDate | DataTime

nu._ HnspectionPassed © bool

+Read(in record - IDataRecord. in offset @ int)

#FomatSql(in sqlformat : siring) © string

+FieldCount() @ int

- StoreOldKey)

+Comparekey(in record : Record, in usethisoldkey - bool) : bool
+TableMame() : string

H+SwingMooringRecord()

Hnspected() : bool

+Prefix ; string
+Mumber | shiort
HType : BerthType
+Length : decimal
HMotes : string

+BerthRecord()
HBerthRecord(in type : BerthType)

BerthRecord ArtificialKeyRecord FeesRecord
H+OldPrefix © string +Oldld - int +EmallVesselDailyFes © decimal
+OldMumber - short Hd it

#Read(in record - IDataRecord. in offset : int)

+nseri(in database : Database)

+Delete{in database - Database)

HFigldCount() : int

HStoreOldKey!)

+Comparekey(in record : Record, in usethisoldkey - bool) : bool
+sMull() : bool

HGeneratekey(in database : Database)

+HMadiumvesselDailyFee ; decimal
+LargeVesselDailyFee : decimal
H+PileMooringDallyFee : decimal
#HardstandDailyFee : decimal

67

© Ben Cotton 2004

VesselOwnerRecord

#MName - siring
+Address | string
+BusinessPhone : string
+PrivatePhone | string
HMobilePhone @ string
FCustomerMo : string
+EmailAddress : sting
+Complate : boal
HMotes @ string

+Read(in record : IDataRecord, in offset - int)
FtFormatSgl(in sqiformat © siring) @ string
+FleddCount{) : int

HTableMame() : string

AbsenceRecord

FApplicationld : int
+LeaveDate : DateTime
+ReturnDate - DateTime

v

ArtificialKeyRecord

+O0dld :int

L el - int

+Read(in record : IDataRecord, in offeet @ int)

+Insert(in database : Database)

+Delate(in database : Database)

+FlaldCount() : Int

+StoreOldkey()

+Comparekey(in record : Record, in usethisoldkey @ boal) : bool
+1sMulll) - bool

i#GenerateXey(in database ; Database)

AN

VesselRecord

e

+Mame : string
+Length : decimal
+Beam : decimal
+Draught : decimal
+Colour ; VesselColour
+Type @ VessalType
+Hull : Hull Type
+Commdctivity © bool
+FireExts : short
+LiveAboards : short
+ElectWalExpiryDate : DateTime = Database MoDate
+SsbCallSign : string
+WhiChannels : siring
+Complete ; bool
+Maotes : siring

+Read{in record : IDataRecord, in offset int)

Format3qgliin sglformat : string) - string

+FigldCount() : int
+TableMame() : string

+sNullf) : bool

LeaseRecord

ApplicationRecord

PaymentRecord

HApplicationld @ int
+Superdpplicationld : int
+Type : LeaseType
+StariDate : DataTime
+EndDate : DateTime

+esselld @ int

+HesselOwnerld ; int

+applyDate : DataTime = DateTimea Mow
H+HWWaiting @ bool

+IntendedBerthType - BerthType

+Leaseld ;int

+BerthPrefix @ string +StariDate : DateTime = Database NoDate =Credit : bool
+BarthNumber : shoit +EndDate : DateTime = Database NoDate +Councl - bool
+Motes | sfring +Motes : string +Motes @ string

+Applicationld : int

+DaeReguested : DateTime = DateTime. Mow
#DatePaid : DateTime = Database NoDate
#Amount ; decimal

HBerthTypeToleaseTypea(in barthiype : BarthType) - LeasaType

+Sublease() @ bool

+alidatel)

+Read(in record - IDataRecord, in offset - int)
FtFormatSgliin sqtformat : string) © string

HFieldCount() : int
#TableMamel) : string

68

© Ben Cotton 2004

MarinaManager.Business

Absences

Vessels

ErewRecord(in table : int) : Record
+Heload()
+FilterPeriod(in startdate | DateTime, in enddate - DateTime)

+Reload()

ENewRecord(in lable | int}) : Record

AV

BaseFunctions: BusinessFunction

#Dalabase - Database

+3gl ;. SglResource = new SglResource("MarnalManager. Business Business. sgl”

+BusinessFunction()

+sFieldException(in exception - Exception} : bool

AN

Leases

VesselOwners

EMewRecord(in table : int) : Record

HReload(in vessel : VesselRecord)

+Reload(in vesselowner ; VesselOwnerRecord)
+Reload(in barth : BarthRecord)

HReload()

+GetApplication(in lease - LeaseRecord) - ApplicationRecord
+GetVessel(in lease - LeaseRecord) | VesselRecord
+EetvesselOwner(in lzase ; LeaseRecord) ; VesselOwnerRecord
+FilterPeriod(in startdate : DateTime, in enddate : DateTime)

ewRecord(in table : int) : Record
Reload()

69

© Ben Cotton 2004

Period

+StartDate : DataTime

+ErndDate - DateTime

ftperiodrecords ; Record[]

~segments ¢ ArrayList = new Arraylisti)

+Perncd(in startidate : DateTime, in enddate : DateTime)
#Daysl() - int
Record(in date : DateTime) - Record
lsDateBetwaen(in compare : DateTimea, in stardate - DateTime. in enddate : DataTime) : baal

ForEachDay(in callback : ForEachDayCallback)

+SegmentCount() : int

+GetSegment(in index : int) | PeriocdSegment

+ExiractSegments|)

+his(in dayindex : int) : Record

HOverlay(in overlaid pericd @ Pariod)

+Combine{in underaid : Record, in overlaid : Record, in underlaidperiod : Pericd) : Record

Hntersectin staridate] : DateTime, in enddate] : DateTime, in startdate? : DateTime, in enddate? - DateTime, out resultstartdate : DateTime, out resultenddate - DateTime) : bool

FHasiverlap artoa te Lime, In enddd Lt 1 aridate LI e, 1N enoiEt Lale | ime) - boo

+Record | Record
+StariDate : DateTime
+EndDate : DateTime

+PericdSegment(in record : Record, in startdate : DateTime, in enddate : DateTime)

Fees

HFaeasRecord | FeesRacord = new FeesRecord()

70

© Ben Cotton 2004

MarinaManager.Business.BaseFunctions

BusinessFunction

H3g] - SalResource = new

IResource("MarnahManager. Business Business. sql”

+Database - Database

RecordList

+BusinessFunction()

HIsFisldException(in excaption : Exception) : bool

EalidateMewRecordiin record : Record)
‘alidatel/pdatedRecord(in record : Recond) : int
‘alidateRemoval(in record - Record)

DuplicateKevErmor) - string
FindCriginal(in record : Record) © int
+Add(in record @ Record)

+Update(in record : Record)

Remove(in record : Record)

I
{
|

I
RNV

InvalidRemovalException

+nvalidRemoval Exception(in message : string)

71

© Ben Cotton 2004

MarinaManager.Business.Applications

ApplicationList

BaseFunctions::RecordList

EMewRecord(in table : int) : Record

#DuplicatelleyErrar() ; string

+Remove(in record : Record)

+GetVessel(in application @ ApplicationRecord) | VesselRecond
+SatvVessel(in application : ApplicationRecord, in vessal - VesselRecord)
+GetVesselOwner(in application | ApplicationRecord) : VesselOwnerRecord

[Find(in applicationid : Int) : int

+Find(in lease : LeaseRecord) : ApplicationRecord
+Find(in absence : AbsenceReccrd) : ApplicationRecord
+Reload()

+SetyesselDwner(in application : ApplicationRecord, in vessslowmer © VessslOwnerRecord)

itfvalidateNewRecord(in record ;| Record)

itfvalidatelUpdatedRecord(in record : Record) - int

—{stfvalidateRemoval(in recard : Record)
HDuplicateleyErar() : string

#FindOriginal{in record : Record) : int

+addiin record - Recaord)

+Update(in record : Record)

+Removelin record | Record)

===

ApplicationChildRecordList

-application : ApplicationRecord
[#subleases | ApplicationSubleases

ApplicationSubleases

this(in index @ int) : LeaseRecord

alidateMewRecord(in record © Record)

1 1 [+Reload(in application : ApplicationRecord, in subleases | ApplicationSubleases)
+application() : ApplicationRecord

#hewRecord(in table - int) ; Record +Subleases() : ApplicationSubleases

+Reldoad(in application : ApplicationRecord) | -subleases +GetDependentSubleases(in record : Record) : LeaseRecord(]
[#lsSubleaseDependent(in sublease : LeaseRecord, in record : Record) - bool
%mmummnui}s%nﬂ_ﬁ::: ﬁmnd_ﬂ _ﬂmoo._d.._

+GetSubleaseDateRange(in Boo_.n_ Record, achmmz_mmﬁm_.ﬁ_mﬁ DataTime, out latestenddate @ DateTima) @ bool

A

ApplicationPaymentList

ApplicationLeaseList

MewRecord(in table ; int) ; Record

+Reloadiin application © ApplicationRecord, in subleases | ApplicationSubleases)
SetRecordApplication(in record : Record)

+EliminateOvphans(in application : ApplicationRecord)

Fpaymenis ;. ApplicationPaymentList
Favailableberth : AvailableBerth

FENewRecord(in table : int) . Record

pvalidateMNewRecord(in record © Record)

Add(in record : Record)

+Remave(in record ; Record)

+Reload(in application : ApplicationRecord, in subleases : ApplicationSubleases)
FlsSubleaseDependent(in sublease - LeaseRecord, in record | Record) @ bool
HSetRecordApplication(in record : Record)

+}<m__m_u_mmm1:n_ ._n._..m__m_u_mmm;:

+nmt3m2m$ }ﬂﬂ__nm._.ozn_me.ima_._m._

72

© Ben Cotton 2004

MarinaManager.Business.Berths

BerthList

l-berthtypeprefixes : string[] = new siring[&) . ™, ™. "PM" "H3" "ST"}
EMewRecord(in table | int) : Record

i\ alidateRemoval(in record : Record)

#DuplicatekayEmon) ; string

+BerthLisi{)

+Reload()

+GetPontoonShore(in prefix - string) - bool
+SetPontoonShoredin prefix © string, in eastshore : bool)
+ i N . siril

+ExtraciPontoons(in pontoons : Pontoons)
+GatBarthLeases(in berth | BerthRecord) @ int

-berths 1
1

Pontoon

4 Prafix | string
+EasiShore : bool

+Ponteon(in prefix : sting, in eastshore : boal)
Hthis(in index ' int) : Berthinfo

tthis(in number : short) | Berthlnfo

+Add(in berth : BerthRecord)

&

BerthPericdView

l-startdate : DateTime

l-enddate : DateTime

Wberths : BerthList = new BerthList()
#leases ; Leases = new Leases()
Wabsencas | Absences = new Absenceas()
Wberthperiods : Period])

Hleaseperiods : LeasePeriod]]

_
_

_

_

_

_

_

_

|
L&

Pontoons.

rthis({in index : int) : Pontoon
this(in prefix - string) : Pontoon

+StartDatel) - DateTime
+EndDate() : DataTime

I-Extractl easePearicds(in leases ' Leases, in absences ' Absences) ' LeasePariod]) -panioans !
-Overlayl easePeriods{in berthperiods : Period[], in leasepencds : LeasePeriod]])
#Reload(in startidate : DateTime, in enddate : DateTime)
FaN 4
AvailableBerths BerthinfoView

~application : ApplicationRecord

+Application() ; ApplicationRecord

-ExtractAvallableBerths{in barth : BarthRecord, in segment : PeriadSegment)
L-ExfractAvailableBerths{in berthperiods : Pericd[])

+Relead{in startdate : DateTime, in enddate | DateTime, in application : ApplicaticnRecord)
Hthis(in index : int) : AvailableBerth

+Filter(in length : decimal)

+Filter(in barthtype : BarthTypa)

Fpontoans : Pontoons = new Pontoons()
lF-applications @ ApplicationList = new ApplicationList{)

+Applications() : ApplicationList

+LeasaTypeToBerhSiatus(in leasetype : LeaseType) : BerthStalus
-ExtractBerthinfo{in segment © Period Segment, in berthinfo : Berthinfo)
l-ExtractPontocnBerthinfol)

-ExtractMonPontoonBerthinfof)

+Reload(in date : DateTime)

+Pontoans() : Pontoans

+this(in index - int) : Berthinfo

73

© Ben Cotton 2004

Business: Period

HStartDate : DataTime

#+EndDate : DateTime

Pperiodrecords | Record[]

Fsegments - Arraylist = new ArrayListi)

#Period(in startdate | DateTime, in enddate ' DataTime)

+Days() : int

#GetRecord(in date : DateTime) : Record

+|sDateBetween(in compare : DateTime, in staridate : DataTime, in enddate : DateTime) : boal
#ForEachDay(in callback : ForEachDayCallback)

4 SegmentCount) @ int

+oetSegment{in index ©int) : PericdSegment

+ExtractSegments()

+this(in dayindex : int) : Record

W Owvarlay(in overlaidperiod © Period)

#Combine(in underaid : Record, in overaid : Record, in underaidperiod | Pericd) © Record
+__._ﬁqmmﬂ____._ wﬁ..ﬂ&ﬂ Dmﬁ....:..m in m:aamﬁx_ _umﬁ._|_._..__m in mnm:n_mdmm Umﬁj._..m in m_._n_amnmm n.mﬁ._.__._._m n__.__ _.mm_._zm"m_.#_mﬁ DateTime, out resultenddate : DateTime) : boaol

-berthperiods *

LeasePeriod

+Lease | LeaseRecord
+Ahsances | Absences

+LeasePeniod(in lease | LeaseRecord, in staridate : DateTime, in enddate | DateTime, in absences ; Absences)
FFindAbsenceiin dayindex ; int, in date | DateTime)

-leaseperiods *

L]

BerthPeriodView

1 Fstartdate ; DateTime
‘.m:nnmﬁm : DateTime
this : BerthList = new BerthList()

eases | Leases = new Leases|)
bsences : Absences = new Absences()

thperads ; Period]]
paseperiods @ LeasePeriod]]
+StariDatel) : DateTime
HEndDate() : DateTime
FExtracileasePeriods{in leases : Leases, in absences : Absences) ; LeasePeriod]
FOwerlayleasePeriods(in berthpariods © Period], in leaseperiods : LeasaPariod(])
HReload(in startdate : DateTime, in enddate : DateTime)

74

© Ben Cotton 2004

MarinaManager.Business.Reporting

FinancialYear
l-startmonth @ int

~endmonth - int
I-FinancialYear)

+Load()
+GetStartMonthiin endyear - int) : DateTime
+EetEndMonthiin endyear ; int) - DateTime

T

BaseFunctions:: BusinessFunction

+5qgl | SqlResource = new SqlResource{"MarinaManager.Business. Business sql"

||||||| —={+Database ; Database

Collections:-ArrayList

+BusinessFunction()
+IsField Exceplion(in exception : Excepfion) : bool

T

|

VesselMonthReport

Business: Leases

Lstartmonth | DateTime
~endmonth : DateTime

+Rekoad(in leasetype ; LeaseType, in startmonth - DateTime, in endmonth : DateTime)
+StartMonth() © DateTimea

+EndMonth() : DateTime

Hthis(in index @ int) : VesselMonth

wstruct=VesselMonth

+Hessals | int
+Manth - DateTime

+esselMonthiin vessels | int, in month : DateTime)

EMewRecord(in table : int) | Record

+Reload{in vessel - VesselRecord)

+Reload(in vesselowner © VesselOwnerReacord)

+Reaload(in berth : BarthRecord)

+Reaload()

+GetApplication(in lease - LeaseRecord) @ ApplicationRecord
+etVessel(in lease | LeaseRecord) | WesselRecord
+etVesselOwneriin lease : LeaseRecord) - VesselOwnerRecord
+FilterPeriod(in startdate - DataTimea, in enddate - DateTime)

T

VesselReport

Fdate : DateTime

Heasetype : LeaseType

+Date() : DateTime

+LeaseTypel) : LeaseType

+Reload(in date : DateTime, in leasatype : LeasaType)
+FilterElectWolExpiryDate(in date : DataTima)

75

© Ben Cotton 2004

MarinaManager.UI.BaseForms

BasaForm LookupDialog
~components : Container = null #recordlistview : RecordListView
LI . ime = e 1 Fselect ; Button
+MaxDate : DateTime = new DateTime{2100, 12, 31) ~components : |Container = null
+BaseFormi) -cancel @ Button
#Dispose(in disposing : bool) -current - Record
nitializeComponent() ~function : BusinessFunction
+ResetDateRange(in dipicker : DataTimePicker H+LookupDialogl)
ispose(in disposing | bool)
NW FinitializeComponent()
+ShowDialeg(in owner ; BaseForm, in function : BusinessFunction, in current ; Record) ; Record
Dialog 4
~components - |Container = null -
- RecordDialeg
+Dialog()
Dispose(in disposing : bool) Feomponents | IContainer = null
nitializeComponant() record | Record
75 Fnewrecord : bool
Flist | RecordList
Fsavechangesandclosebutton : Button
Feavechangesbution : Button
lcancelchangesbution @ Button
Feavaechangesclick : EventHandler
Feavechangesandclosedick © EventHandler
FixedSizeDialog Foencelchangesclick : EventHandler
n —
-components ; [Container = null MMBED:_M_MMWE_:E - boal)
+FixedSizeDialog() InitializeComponeant(}
hispase(in disposing : bool) Record() : Record
HnitlializeComponent() NewRecord() : bool

InitializeDialoglin template : Record)

+ShowMewDialeg(in owner : BaseFarm, in list : RecordLizt, in template | Record) | Record
+ShowEditDialog(in owner | BaseForm, in list : RecordList, in existingrecord @ Record) - Record
Savelin record : Record, in newrecord | bool) - bool

Cancel()

veChangesAndCloseClickiin sender ; object, in e ; Eventérgs)

veChangesClick(in sender - object, in & | EventArgs)

ancelChangesClick(in sender - object, in e | EventArgs)
+SaveChangesAndCloseButton() @ Button

+SaveChangesButton() : Bution

+CancelChangesBution() - Button

76

© Ben Cotton 2004

MarinaManager.UI.Controls

Forms:: Button

T

RecordListView

BerthButton

Fnumbertexiregionheight : ushort = 20

~berthinfo | Berthinfo
-topalign - bool = false

~-components | Container = null
[Frewhution ; Button

Fnewclick : EventHandler
|editclick : EventHandler
-removeclick : EventHandler

HCOnPaint{in pe | PaintEventArgs)
EHOnClick(in e : EventArgs)
H+Berthinfol) : Berthinfo
+TopAlign() : bool

i .

+BerthCilcky) : BanthClickEventHandler

-pontoonpanel | Panel

~components © [Container

Lrightletter - Label

Heflettar : Labal

-tooltip : ToolTip

~topberthpanel : Panel

-bottomberthpanel : Panel

-pontoon : Pontoon

-topberthbuttons - SortedList = new SortedList()
-bottomberthbuttons @ SortedList = new SortedLisi()

+RecordListiew()

[#Dispose(in disposing : baol)

| nitializeComponent()

-MNewClick{in sender : object, in args | EventArgs)
[FClearltemiin item : ListWiewltam)

FEditClick({in sender : object, in args : EventArgs)
|-RemoveClick(in sender : object, in args - EventArgs)
+MewButton() : Button

+EditButton() | Button

+RemoveBution() - Button

+MNewRecord() : NewReacordEventHandlar
+EditRacord] : EditRecordEvantHandlar
+RamoveRecord() : RemoveRecordEvantHandler
+FillRecorditerny) : FillRecordlfermEventHandler
+Add(in record : Recard)

+GetRecord(in item : ListViewliem) : Record
+Refill{in item - ListViewltem)

+Refill{in record - Record)

+Update(in function : BusinessFunction)

Controls: EditListView

—

-FillBerthButtonList(in list : SortedList, in panel | Panel)
+Pontoon(in pontoon ; Pontoon)

#Dispose(in disposing © bool)

- nitializeComponent()

EasiShore() : boal

-ClearBerthButtons(in panel : Panel)

+Clear)

-GetBerthButton(in number : short) | BerthButton
-MakeTeolTip(in berthinfo : Berthinfo) : string
-SetBarth{in berthinfo : Berthinfa)

-ClearBerthiin number : short)

-berthButton_BerthClicklin sender - object, in berthinfo : Berthinfo)

+BerthClick() : BarthClickEventHandler

v

Forms::UserControl

PontoonView

-companents : Container = null
Fpantoans - Pontoons

+PontoonView()
mDispose(in disposing - bool)
Hnitialize Companent() _V

FAddPontoon(in pontoon : Pontaon, in index ; int)
+Refrash{in pontoons : Pontoons)

+Pontoons() - Pontoons

-barthclick() : BerthClickEventHandler

+BerthClickl) : BerthClickEventHandler

Farms:-Panel

77

© Ben Cotton 2004

MyLibrary

astrucirGeodeticCoordinate

-bearing : Bearing
degrees : ushort
Fminutes © ushort

~seconds | ushon

+GeodeticCoordinate{in bearing : Bearing, in degrees © ushort, in minutes : ushort, in seconds : ushort)
+Bearing(} : Bearing

+Deagrees() : ushort

+Minutes() @ ushart

HSeconds() - ushort

+ToString() : string

Printing::PrintDocument

PrintableTable

quiter : int = 30
Frowdgap :int = 20
Fheader : StringCollection = new StringColleciion()
Foells : stringl,]
Foolumnwidths : float]]
Hont @ Font
Fheaderheight : float
-footerheight : float
Frowheights © float()
Fpanefirstrowindesx : int
Fpagenumber - int

HPrintebleTable(in columns © int, in rows - int, in headerlines ; params string(])
HPrintableTable(in cels : string,], in headerines - params string(])
HHeader() : StringCollaction
+this(in column @ int, in row @ int) @ string
+ColumnCounti) - int
HRowCounti) ; int
HSetColummidthlin columninds ; int, in width ; float)
FGalColummWidihlin colurmnindex ; int) : float
+Font() : Font
FMeasureRowHeight(in graphics - Graphics, in rect | Rectangle, in rowindex int)
FhleasureRowHeights(in graphics ; Graphics, in rect ; Rectangle)
FeasureHeaderHeight(in graphics ; Graphics) : float
FeasureFoaterHeight{in graphics | Graphics) : float
HOnPrintPagelin e : PrintPageEventirgs)
DrawRow(in graphics : Graphics, in rect | Rectangle, in rowindex : int, in font : Font)
DrawHeader(in graphics ; Graphics, in rect - Rectanale)
DrawFooter(in graphics ; Graphics, in rect - Rectanale, in pagenumber - int)
Print()

78

MyLibrary.Controls

Forms::Panel

T

Graph
rcomponents @ Container = null
raiswidth @ ushort = 70
Hifleheight | ushort = 30

Lrmargin ; ushort = 10
#rmajortickwidth : ushort = 10
BEminorickwidth : ushort = 5

Hiicklabelwidth : ushort = 50 >

© Ben Cotton 2004

wstruct«GraphPoint

_arles [YMName : sting
+\alue @ int

rxaxistabelgap ; ushort = 30
Fmajoryinterval | short 1
Fminaryinterval | short

#PrintDocument : PrintDocument = new PrintiDocurment()
series | GraphPoint]]

Hitle : string

Fxaxislabel ; string

Hyaxislabel @ string

+Graphi)
#FDisposelin disposing : bool)
HinitializeComponent()
HOnPaint{in pe : PaintEventArgs)
LPrintPage(in sender @ objact, in e : PrintPageEventargs)
raw(in graphics : Graphics, in rect : Rectangle)
DrawTitle(in graphics - Graphics, in rect : Rectangle)
rawXAxis(in graphics | Graphics, in rect ; Rectangle)
rawY Axis(in graphics | Graphics, in rect : Rectangle)
rawPlotArealin graphics | Graphics, in rect : Rectangle)
Series() - GraphPgoint[]
HighValue() - int
Title() ; string
HAxisLabel() - string
YiAxisLabel() : siring
Majory Interval() : short
MinorY Interval() : short

—

+GraphPoint{in name : string, in value : int)

Formms: ListView

f%h

EditListView

-components | Container = null

-editbutton : Bution

Fremovebutton : Button

+EditList\iew{)
#OnSelectedindexChanged(in & | EventfArgs)
+EditButton() ; Button

+RemoveButton() : Button

MDispose(in disposing @ boal)
l-InitializeComponent()

LineGraph

Fcomponents - Container = null

grawxﬂuds[in graphics ; Graphics, in rect ; Rectangle)
rawPlotarea(in graphics | Graphics, in rect : Rectangle)
HLineGraph()

#Dispose(in disposing : bool)

FinitializeComponent()

HDrawGrid(in graphics ; Graphics, in rect ; Rectangle, out xinterval : float, out vinterval ; flogt)

Forms::ComboBox

ImageComboltem
Hext : string
Fimageindex ! int = -1
ImageComboBox tag - object

~components ; Container = null QI +ImageComboltem(in text : string)
Fimagelist : ImageList 1 +ImageCombaltemiin text | string, in imageindes | int)
+ImageComboBox() * |HimageComboltemiin text : string, in imageindex : int, in tag : object)
[BDispose(in disposing : bool) +Text() : string
FInitializeCompanent(} +imagelndax() ; int
+imagelist() : Imagalist +Tag() object
BOnDrawdtemiin e | DrawlemBventirgs) +ToStringl) © string

79

